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Theoretical description of repeated surface-tension auto-oscillations

N. M. Kovalchuk1 and D. Vollhardt2,*
1Institute for Problems of Material Science, 03142 Kiev, Ukraine

2Max Planck Institute of Colloids and Interfaces, 14424 Potsdam/Golm, Germany
~Received 25 March 2002; published 14 August 2002!

A mathematical model is proposed to follow the behavior of a system where a droplet of a surfactant with
limited solubility on the tip of a capillary under the free liquid surface dissolves in a container with a unity
aspect ratio. Numerical simulations show that instability repeatedly arises and fades in the system, resulting in
auto-oscillations of the surface tension in agreement with the experimental data. The system evolution during
the oscillation is discussed in detail. It is established that the presence of a boundary in the radial direction is
a necessary precondition for the appearance of the second and following oscillations.

DOI: 10.1103/PhysRevE.66.026302 PACS number~s!: 47.20.Dr, 68.03.2g, 47.20.Ma, 68.35.Fx
um
h

dy
m

o
s
i
n
h

t t
as
en

ac
o

l-
le

ng

t

O
p
th

p
a

Th
r

la

th
ia

nse-
s-
dial
to-
s of
ary.

nce
be

lop-
se-
are

ic
ible
id

f a
sfer
ime
the
a
n-

ery

ably
the
-oil

em
INTRODUCTION

Processes taking place in systems far from equilibri
have been attractive for researchers for many decades. W
the system contains liquids with a free interface, hydro
namic instability driven by the Marangoni effect can acco
pany the processes of mass and energy transfer@1,2#. Most of
the theoretical papers devoted to this problem deal with c
stant gradients of the temperature or concentration impo
perpendicular to the interface or along it. At the same time
a great number of experimental investigations the gradie
change with time and are nonuniform in space. That is w
the available criteria are sometimes inadequate to predic
appearance and form of the instability. This is just the c
with the phenomenon of the auto-oscillation of surface t
sion considered below.

Auto-oscillations are observed on the free water surf
by the dissolution of a surfactant droplet situated at the tip
a capillary under the surface@3,4#. The water is poured into a
glass vessel with aspect ratio~the ratio of the radius to the
height! of the order of unity. Diethyl phthalate, aliphatic a
cohols, or fatty acids have been used to form the drop
Oscillations begin after a certain induction time duri
which the surface tension remains constant. They have
asymmetrical shape starting with an abrupt decrease of
surface tension followed by a gradual increase~Fig. 1!. The
oscillation period depends on the surfactant properties.
cillations are absent when the immersion depth of the ca
lary is smaller than a definite critical value depending on
surfactant properties@4#.

Talcum powder placed on the surface displays a ra
surface motion directed from the capillary to the vessel w
simultaneously with the decrease of the surface tension.
shows that the surface-tension auto-oscillations can be
lated to the development of a convective instability. Oscil
tions are revealed for surfactants having a density larger~di-
ethyl phthalate! and smaller ~alcohols, fatty acids! than
water. Therefore, the Marangoni effect is responsible for
phenomenon and the buoyancy can play only a subsid
role.

*Author to whom correspondence should be addressed.
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en
-
-

n-
ed
n
ts
y
he
e
-

e
f

t.

an
he

s-
il-
e

id
ll
is
e-
-

is
ry

The concentration gradient near the surface, and co
quently the Marangoni number, which is the criterion of sy
tem stability, changes over time and depends on the ra
coordinate. That is why it is impossible to explain the au
oscillation mechanism of the surface tension on the basi
known theories, and a special theoretical study is necess
In addition, the system geometry is vital for the appeara
and characteristics of the auto-oscillations and should
taken into consideration.

An understanding of the processes leading to the deve
ment of auto-oscillations of the surface tension might be u
ful for the investigation of processes in other systems that
far from equilibrium. In particular, a similar hydrodynam
evolution may be a component of the mechanism respons
for the oscillations of the electrical potential across liqu
membranes investigated by Araiet al. @5–7# and by Maeda
et al. @8#. Normal and tangential concentration gradients o
surfactant appear at the water/oil interface by mass tran
through an oil membrane. Both gradients change over t
and along the interface according to the geometry of
measuring cell. Thus, from the hydrodynamic point of view
system with a liquid membrane is quite similar to those co
sidered in this paper. The form of the oscillations is also v
similar in both cases.

The hydrodynamic approach developed here can prob
be helpful also for a more thorough understanding of
oscillations of the surface tension observed at the water
interface by Dupeyrat and Nakache@9# and studied recently

FIG. 1. Auto-oscillations of the surface tension in the syst
water–diethyl phthalate~experimental results@4#!.
©2002 The American Physical Society02-1
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by Magome and Yoshikava@10#.
Numerical simulations of the dynamic behavior of sy

tems with temporally and spatially changing surface conc
trations were performed by Jensen and Grotberg@11# and by
Matar and Troian@12# for the spreading of an insoluble su
factant over a thin liquid film and by Yeoet al. @13# for film
drainage between two drops. Because of the system ge
etry, they used the lubrication approximation where the in
tial terms in the Navier-Stokes equations are neglected.
the other hand, these terms are significant for surface-ten
auto-oscillation, so in this case the full Navier-Stokes eq
tions should be solved.

Theoretical analysis of the mechanisms leading to the
velopment of auto-oscillations was started in Ref.@3# and
proceeded in Refs.@14,15# where a mathematical model wa
proposed for investigation of the conditions of the instabil
arising in a semi-infinite liquid layer with a surfactant drop
under the free surface. A direct numerical simulation allow
us to follow the regularities of the model system evoluti
during the induction period and at the first oscillation. T
effect of the surfactant properties on the system behavio
this time was studied as well. But it turned out to be impo
sible to obtain the second and following oscillations with
the limitations of this model. Thus an improved model w
needed to clear up the nature of the surface-tension a
oscillations and the possibility of subsequent oscillatio
This paper is devoted to a description of such a model an
discussion of the results of the numerical simulation p
formed on its basis.

MATHEMATICAL FORMULATION

The model system considered represents a cylindrical
sel filled with an incompressible viscous Newtonian liqu
The upper free surface of the liquid is in contact with
passive gas. A cylindrical capillary is introduced into t
liquid. The capillary axis coincides with the vessel axis.
droplet of a surface-active substance having a limited s
bility in the liquid is placed on the tip of the capillary. It i
assumed that the density of the solution is independent o
concentration and buoyancy can be neglected. The diffu
coefficient of the solute~in the bulk as well as at the surface!
and the viscosity of the solution are assumed to be cons
The viscosity of the gas, the intrinsic surface viscosity,
decrease of the droplet volume due to dissolution, and
evaporation of the surfactant from the liquid/gas interface
neglected. The main difference of the model proposed h
from that considered in Ref.@14# is the presence of the cap
illary and the sidewall. The presence of the sidewall is
necessary condition for the appearance of repeated os
tions, as shown below.

The equations governing the behavior of the system
the Navier-Stokes, continuity, and convective diffusion eq
tions. According to the system symmetry it is convenient
use cylindrical coordinates. Experiments with talcum pow
show absence of motion in the azimuthal direction. The
fore there is no dependence on the azimuthal coordin
This gives the possibility of eliminating the pressure by
02630
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troducing the vorticity and the stream function according
the equations

v r5
1

r

]C

]z
, vz52

1

r

]C

]r
, v5

]v r

]z
2

]vz

]r
, ~1!

wherer is the radial coordinate,z is the normal to the surface
coordinate downward directed withz50 at the surface,v r
andvz are velocity components in directions radial and n
mal to the surface, respectively,C is the stream function, and
v is the vorticity.

If time, length, concentration, stream function, vorticit
and velocity are scaled, respectively, byH2/D, H, c0 , HD,
D/H2, andD/H ~here,H is the vessel height,D is the bulk
diffusion coefficient of the surfactant, andc0 is the surfactant
solubility! the governing equations in dimensionless form a

]v

]t
1

]~v rv!

]r
1

]~vzv!

]z

2PrdS ]2v

]r 2 1
]2v

]z2 1
1

r

]v

]r
2

v

r 2D50, ~2!

]2C

]r 2 1
]2C

]z2 2
1

r

]C

]r
2vr 50, ~3!

]c

]t
1

]~v rc!

]r
1

]~vzc!

]z
1

v rc

r
2S ]2c

]r 2 1
]2c

]z2 1
1

r

]c

]r D50,

~4!

where Prd5n/D is the diffusion Prandtl number~Schmidt
number!, n is the kinematic viscosity of the liquid, andc is
the surfactant concentration.

Initially, the liquid is assumed motionless, and the co
centration of the surfactant is equal to its solubility on t
droplet surface~S! and zero elsewhere, i.e.,

C5v5v r5vz50,

c5H 1 if z,r PS

0 elsewhere
~5!

at t50. The no-slip condition is used for the wall and th
bottom of the vessel, for the capillary and the droplet s
face. Then, the dimensionless boundary conditions for
stream function, vorticity, and concentration are

C50, v5
1

R

]2C

]r 2 ,
]c

]r
50 at r 5R, ~6!

C50, v5
1

r

]2C

]z2 ,
]c

]z
50 at z51, ~7!

C50, v50,
]c

]r
50

at r 50øh1r 01Ar 0
22r c

2,z,1, ~8!
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C50, v5
1

r S ]2C

]r 2 1
]2C

]z2 D , c51 at r ,zPS, ~9!

C50, v5
1

r c

]2C

]r 2 ,
]c

]r
50

at r 5r cø0,z,h, ~10!

C50 at z50, ~11!

v5Ma
1

~12KLc0G!

]G

]r
at z50, ~12!

]G

]t
1

]~Gv r !

]r
1

Gv r

r
2

Ds

D S ]2G

]r 2 1
1

r

]G

]r D
2

H

KLGm

]c

]z
50 at z50. ~13!

HereR is the vessel radius,h is the immersion depth of the
capillary,r 0 is the droplet radius,r c is the capillary radius,G
is the Gibbs adsorption~scaled byc0KLGm), KL andGm are
the parameters of the Langmuir isotherm, and M
5RTc0KLGmH/rnD is the Marangoni number,R is the gas
constant,T is the temperature,r is the liquid density, andDs
is the surface diffusion coefficient. Equation~12! is obtained
from the tangential stress balance on the free surface by
ing the Szyszkowsky-Langmuir equation for the surface t
sion. Equation~13! describes the mass balance on the f
surface with the assumption of diffusion controlled adso
tion kinetics. It is also assumed that the relationship betw
the Gibbs adsorption and the adjacent bulk concentratio
given by the Langmuir isotherm written for dimensionle
variables:

G5
c

11KLc0c
. ~14!

NUMERICAL SCHEME

A mathematical simulation was performed by using t
finite difference method on a regular grid. Equation~3! was
solved by the Gauss-Seidel iterative method. For Eqs.~2!
and ~4! the two-point forward difference approximation
used for the time derivatives, the three-point centered dif
ences are used for the diffusion terms, and the modified
wind differences are used for the convective terms@16#. The
use of upwind differences for the convective terms int
duces an artificial diffusivity in the numerical scheme. Th
diffusivity is proportional to the velocity value in the corre
sponding direction. The analysis of the numerical d
shows, however, that the contribution of the convective fl
to the concentration change over time is of the same orde
magnitude as the contribution of the diffusion flux only wh
the dimensionless velocity is of the order of 1. The artific
diffusivity is less than 0.01 for this value of the velocity~and
for the grid resolution chosen below!. It can evidently be
neglected in comparison with 1@the coefficient before the
02630
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diffusion term in Eq.~4!#. The convective flux is proportiona
to the velocity and it can be much larger than the diffusi
flux at the largest values of the velocity. In this case t
contribution of the artificial diffusion coefficient can also b
neglected because of the small contribution of the diffus
flux in comparison to the convective flux. The same reas
apply for the vortex transfer.

The proper grid resolution was implemented by compa
son of the results of the calculations for different grids~Table
I!. In order to ensure the geometrical similarity of the syst
used for all the grids considered, the surfactant droplet w
modeled as a cylinder of radiusr 051 mm and heighth0
52 mm. The other geometrical parameters we
chosen as follows: capillary radiusr c51 mm, capillary
immersion depthh58 mm, vessel radiusR520 mm, and
vessel heightH520 mm. The liquid used was water. Th
properties of the surfactant~diffusion coefficientsD5Ds
57.8131026 cm2/s, solubility in water c055.831025

mol/cm3, parameters of the Langmuir isothermGm56.2
310210 mol/cm2, KL52.33105 cm3/mol! are close to
those for hexanol and hexanoic acid.

It is seen from Table I that there is a rather large diffe
ence between the values of the induction period calcula
on grids of 20320, 40340, and 80380 mesh. At the same
time the results for the grids of 80380 and 1203120 mesh
differ by less than 5%. Thus the 80380 mesh provides suf
ficient accuracy and can be used for the simulation.

RESULTS AND DISCUSSION

Numerical simulation allows us to get the concentrati
and velocity distributions in the bulk and on the surface
any time and to watch the time evolution of the system. T
simulations show that the behavior of the system under c
sideration depends on the surfactant properties and the
tem geometry. Examples of the calculated dependencie
the surface tension over time are presented in Figs. 2~a! and
3~a!. The simulations were performed for the parameter v
ues given in section ‘‘Numerical scheme’’ for a spheric
surfactant droplet of radiusr 051.5 mm. The immersion
depth of the capillary is a geometrical parameter whose
fluence is particularly strong. Oscillations of the surface te
sion are absent if the immersion depth is small enough~Fig.
3!. Only one oscillation appears at a certain increase in
immersion depth, and finally well shaped regular oscillatio
are obtained by further increase of the depth~Fig. 2!. Thus,

TABLE I. Calculated induction period depending on the gr
resolution.

Grid resolution
~mesh point number!

Induction period

min %

20320 13.1 45.5
40340 22.6 78.7
80380 27.4 95.5

1203120 28,7 100
2-3
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the model system predicts the same regularities as obse
in the experiments@4#.

The calculations show the presence of repeated reg
oscillation of the surface tension~after several transitiona
oscillations! for a capillary immersion depthh58 mm @Fig.
2~a!#. Thus, the phenomenon of spontaneous au
oscillations can be explained within the framework of
simple model, which takes into account only diffusion fro
the droplet and convection due to the Marangoni effect
gether with nonuniform adsorption on the free surface. T
simulations display, first, that the transition from the slo
diffusion regime to a regime with well developed convecti
is very fast, which looks like an abrupt decrease of the s
face tension, and, second, that the transitions between t
two regimes can repeat themselves periodically for a lo
time, as in a real system. The shape of the calculated o
lations is very similar to the shape of the oscillations expe
mentally observed. Consequently, the proposed model is
equate in describing the mechanism of spontaneous a
oscillations. Of course, buoyancy, evaporation of t
surfactant, mixed~not pure diffusion! adsorption kinetics,
surface deformation, and other factors should affect osc
tion characteristics such as induction time, period, and
plitude. But the simulations performed demonstrate none
these factors plays a crucial role in the mechanism of a
oscillations.

The hydrodynamic behavior of the system under cons
eration resulting in auto-oscillations of the surface tension
evident from the time dependence of the surface velo
presented in Fig. 2~b!. The system evolution is characterize
by the interchange of two stages. The induction period
the time between the pulses correspond to very slow mo

FIG. 2. Results of numerical simulation for the capillary imme
sion depth h58 mm and the distance from the capillaryr
510 mm: ~a! surface tension vs time;~b! surface velocity vs time.
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on the surface and in the bulk. At a certain moment
system becomes unstable. The rise of instability reveals it
by a rapid increase of the velocity. The increase of the
locity leads to a considerable acceleration of the mass tr
fer and simultaneously to the spreading of the surfactant o
the interface. This corresponds to a sharp decrease of
surface tension@Fig. 2~a!#. The fast stage continues only fo
a rather short time. Then the instability fades and the velo
decreases by several orders of magnitude. The system re
to the slow stage. This stage corresponds to a slow incre
of the surface tension due to the gradual desorption of
surfactant@Fig. 2~a!#. The nonsymmetrical shape of the aut
oscillation of the surface tension is determined by the diff
ences of the two considered stages. The fast stage is sho
is characterized by much more intensive mass transfer
the slow stage.

The velocity change vs time for the capillary immersio
depthh54 mm and a distance of 10 mm from the capilla
is presented in Fig. 3~b!. It is seen that in this case instabilit
also arises. The maximum value of the surface velocity
even larger than forh58 mm @see Fig. 2~b!#. The surface
tension sharply decreases after a time of about 6 min cau
by the increase of instability@Fig. 3~a!#. However, the further
velocity alteration with time, when the instability fades,
very different. After a rather short time the velocity decrea
becomes much slower forh54 mm. Later the velocity de-
creases gradually and remains positive and relatively la
over all time. The surface tension also decreases cont
ously without further oscillations. A completely different de
pendency was obtained forh58 mm. Here, the velocity de
creases rapidly to zero and even becomes negative, i.e.
surface layer of liquid moves to the capillary. The negat

FIG. 3. Results of numerical simulation for the capillary imme
sion depth h54 mm and the distance from the capillaryr
510 mm: ~a! surface tension vs time;~b! surface velocity vs time.
2-4
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THEORETICAL DESCRIPTION OF REPEATED . . . PHYSICAL REVIEW E66, 026302 ~2002!
values of the velocity are small and in the course of time
velocity decreases almost to zero. The reverse moveme
the liquid always accompanies the repeated oscillations
the surface tension~Fig. 2! and is not observed in the case
a single pulse~Fig. 3!. Thus, it might be supposed that th
appearance of the liquid motion in the opposite direction
an essential precondition for the repetition of the surfa
tension oscillations. We consider now the development of
first oscillation and the conditions for the evolution of th
following oscillations in more detail.

The evolution of the system at the initial period, name
during the induction time and at the beginning of the fi
oscillation, is not sensitive to the vessel dimensions. It
quite similar to that for the unbounded liquid layer cons
ered in Ref.@14#. During the induction period the surfacta
is transferred mainly by means of diffusion. Diffusion form
a spherically symmetrical concentration field in the bu
phase around the droplet. This leads to an inhomogene
concentration distribution at the gas/liquid interface. The s
face concentration has a maximum near the capillary
decreases very fast with increasing distance. For exam
the concentration near the wall is 28 orders of magnitude
than that in the vicinity of the capillary in the case presen
in Fig. 2 at timet526 min, i.e., at the end of the inductio
time. The radial distribution of the surface concentration d
ing the development of instability is presented in Fig. 4~a!. It
is seen that even at the moment of the beginning of insta
ity, the concentration near the wall is some orders of mag
tude less than near the capillary~curve 1!. The normal con-
centration gradient near the surface has the same depend
on the radial coordinate. The concentration distribution in
bulk phase is given in Fig. 5. It is nearly spherical at the e
of the induction period@Fig. 5~a!#.

The surface concentration gradient and the correspon
gradient of the surface tension lead to the appearance
circular convective motion in the radial direction due to t
Marangoni effect. Initially, the center of the convective m
tion ~the point where the stream function has a maximum! is
in the vicinity of the capillary. With time the velocity in
creases according to the increase of the surface concentr
and the surface concentration gradient. The location of
stream function maximum moves slowly to the wall. T
convective streamlines at the end of the induction period
presented in Fig. 6~a!. The velocity distribution near the cap
illary is also almost insensitive to the vessel dimensions
fore the beginning of oscillations.

According to the velocity and concentration distributio
the convective flux brings a more concentrated solution fr
the droplet to the surface in the vicinity of the capillary. Th
leads to a more rapid increase of the normal concentra
gradient~Fig. 7! and solute flux to the surface in this regio
The surface concentration and the surface concentration
dient increase much faster when convection becomes ap
ciable. This results in an increase of the surface and b
velocity which in turn results in a further increase of t
normal concentration gradient. Thus, the convection acce
ates itself, i.e., instability arises in the system. The devel
ment of instability is discussed more comprehensively
Ref. @14#.
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Convection spreads the solute over the surface@Figs. 5~b!
and 5~c!#. This leads to a sharp decrease of the surface
sion over the whole surface. The normal concentration g
dient has a maximum near the capillary and decreases
fast with increasing distance~Figs. 7 and 8!. The vicinity of
the capillary is the region where the solute is supplied to
surface. In the vicinity of the wall the normal concentratio
gradient near the surface is negative. The solute is supp
in this region due to surface convection. Here, it desorbs
the convective flux removes it@Figs. 5~c! and 5~d!#.

It is seen from the radial surface velocity distribution th
the velocity decreases sharply near the wall@Fig. 4~b!, curves
1 and 2#. This leads to a local surface contraction here a
therefore to an increase of the surface concentration nea
wall. A reverse surface concentration gradient appears in
region@Fig. 4~a!, curves 2–4#, which suppresses the surfac
flow and causes a decrease of the surface velocity@Fig. 4~b!,
curves 2–4#.

Because of the development of instability the maximu
of the stream function moves to the wall in the radial dire

FIG. 4. Radial distribution of surface concentration~a! and sur-
face velocity~b! and ~c! for capillary immersion depthh58 mm:
curve 1, t526 min 11 s, curve 2,t526 min 12 s, curve 3,t
526 min 13 s, curve 4,t526 min 14 s, curve 5,t526 min 20 s,
curve 6,t527 min, and curve 7,t539 min 30 s.
2-5



N. M. KOVALCHUK AND D. VOLLHARDT PHYSICAL REVIEW E 66, 026302 ~2002!
FIG. 5. Concentration distribution in the bulk phase:t5(a) 26 min,~b! 26 min 10 s,~c! 26 min 20 s,~d! 26 min 34 s,~e! 27 min, and
~f! 39 min 30 s. The values of the dimensionless concentration are as follow: For~a!–~e!, curve 1,c5231021, curve 2,c51022, curve 3,
c5231024, curve 4,c51026, curve 5,c51029, and curve 6,c510214. For ~f!, curve 1,c5231021, curve 2,c5531022, curve 3,
c5831023, curve 4,c51023, curve 5,c51024, and curve 6,c51026.
a
ed

s

the
sion
n-
s to
tion and away from the surface in the vertical direction@Figs.
6~b! and 6~c!#. According to the new velocity distribution
more dilute solution is involved in the motion and is suppli
to the surface from the bottom@Figs. 5~c!–5~e!#. The normal
concentration gradient decreases~Fig. 7! and then decrease
02630
the surface concentration near the capillary because of
decrease of surfactant supply and the local surface expan
here@Fig. 4~a!, curve 6#. The decrease of the surface conce
tration and the surface concentration gradient also lead
velocity damping caused by viscous dissipation~along with
2-6
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FIG. 6. Streamline distribution in the bulk phase:t5(a) 26 min (Cmax527.9); ~b! 26 min 14 s (Cmax515 904); ~c! 26 min 20 s
(Cmax54149); ~d! 26 min 34 s (Cmax5731,Cmin5232.7); ~e! 27 min (Cmax510.7,Cmin5289.1); ~f! 39 min 30 s (Cmax53.75,Cmin

520.78); hereCmax andCmin are the maximum and minimum of the dimensionless stream function, respectively.
th
a

ti

in

the
ve
de-
sfer.
the reverse surface concentration gradient near the wall!. The
instability fades gradually.

The reverse concentration gradient is the reason for
development of the reverse convective roll near the w
@Fig. 6~d!#. This roll expands toward the capillary@Fig. 6~e!#.
The velocity on a large part of the surface becomes nega
02630
e
ll

ve

@Figs. 1~b! and 4~b!, curve 6, and also the same curve 6
Fig. 4~c! at higher resolution#. The interaction of the initial
and reverse convective rolls causes faster damping of
convective motion due to intensification of the dissipati
processes. At this time the convective mass transfer
creases and becomes less than the diffusion mass tran
2-7
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N. M. KOVALCHUK AND D. VOLLHARDT PHYSICAL REVIEW E 66, 026302 ~2002!
This causes a further decrease of the solute delivery to
surface. The surface concentration becomes almost unif
due to convective and diffusion redistribution of the surfa
tant @Fig. 4~a!, curve 6#.

During the slow stage the concentration distribution b
comes different over the bulk regions@Fig. 5~f!#. Near the
capillary the concentration distribution is nearly spherical
stretched upward. The normal concentration gradient at
surface is downward directed. In more distant surface
gions the normal and tangential concentration gradients
lower by some orders of magnitude. The normal concen
tion gradient is upward directed. The velocity is 3–4 ord
of magnitude less than during the fast stage@Fig. 4~c!, curve
7#. The reverse roll is reduced@Fig. 6~f!#. The diffusion sur-
factant transfer is directed to the surface in regions very c
to the capillary and from the surface into the bulk in all mo
distant regions. The general tendency is a slow decreas
the surface concentration at this time.

When the convective mass transfer falls, diffusion fro
the drop leads to a renewed increase of the concentratio
the capillary region close to the surface. Thus the instab
develops again after a certain period of time in accorda
with the mechanism discussed above, i.e., the next osc
tion begins.

It should be noted that the maximum negative value of
surface velocity increases with increase of the mesh p
number, which leads to a decrease of the calculated osc

FIG. 7. Dimensionless normal concentration gradient near
surface as a function of time for the distances from the capill
curve 1, r 51.5 mm, curve 2, r 54 mm, and curve 3, r
516.5 mm.

FIG. 8. Radial distribution of the dimensionless normal conc
tration gradient near the surface at the timet526 min 14 s.
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tion period. Although the numerical simulations provid
lower induction periods~Table I! and higher auto-oscillation
periods, the appearance or absence of the reverse liquid
tion ~from the wall to the capillary! is independent of the grid
resolution.

The appearance of the reverse convective roll is the m
distinction in the evolution of a system that displays repea
oscillations. It leads to a much faster decrease of convec
mass transfer after the oscillation than in the case of a sin
pulse~oscillation!. Development of instability takes place a
the capillary immersion depthh54 mm too, resulting in a
sharp increase of the surface concentration~Fig. 9, curve 2!.
The reverse concentration gradient near the surface app
also in this case~Fig. 9, curves 3 and 4!. However, this
concentration gradient is not sufficient to cause the deve
ment of the reverse convective roll. It only shifts the strea
lines of the convective motion to the capillary. That is wh
the velocity decreases much more slowly after the oscillat
at h54 mm than after that ath58 mm @cf. Figs. 2~b! and
3~b!#. A small positive tangential concentration gradient e
ists in the vicinity of the capillary all the time. Surfactant
continuously transferred from the capillary over the who
surface. The surface concentration increases~Fig. 9, curves 5
and 6! and the surface tension decreases gradually with
subsequent oscillations@Fig. 3~a!#.

As was mentioned above, the solubility and the para
eters of the Langmuir isotherm of the surfactant used in
simulations are close to those for hexanol and hexanoic a
Let us compare the numerical results with the experime
data given in Ref.@17# for the system hexanoic acid–wate
This system is chosen because it is less affected by buoy
than the system hexanol-water, and the presented nume
model does not take buoyancy into account. The experim
reveals an induction time~the time before the first oscilla
tion! of approximately 6 min and oscillation periods in th
range of 6–12 min for an immersion depth of the capillary
approximately 9 mm. The calculated induction time is a
proximately 26 min, and the oscillation period approximate
7 min. The oscillation period increases slightly with time.

The calculated oscillation period agrees rather well w
the experimental data. The difference in calculated and
perimentally observed induction times may be caused by

e
y

-

FIG. 9. Radial distributions of the surface concentration for c
illary immersion depthh54 mm: curve 1,t55 min 40 s, curve 2,
t55 min 41 s, curve 3,t55 min 42 s, curve 4,t55 min 43 s, curve
5, t55 min 50 s, and curve 6,t57 min.
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small influence of buoyancy as well as by the peculiarities
the experimental procedure. As a matter of fact the forma
of a droplet at the tip of a capillary takes about 2–3 min a
is accompanied by motion of the liquid inside the capilla
while the injected surfactant passes the capillary. The c
vective motion accelerates the mass transfer in the vicinit
the surfactant/water interface and creates an initial surfac
distribution near the droplet that causes a decrease of
induction time. This may also be the reason for the differe
in the amplitudes of the first and following oscillations@Fig.
2~a!#. The other possible cause of the difference in para
eters of the first oscillation may be the neglect of surfact
evaporation in the mathematical model. The evaporatio
most intense just during the initial period of time. It is ev
dent, however, that the influence of all the mentioned p
nomena requires further investigation.

CONCLUSIONS

Direct numerical simulation demonstrates that the au
oscillations of the surface tension on a free liquid surfa
caused by dissolution of a surfactant droplet in the b
phase, can be explained within the framework of a sim
model taking into account diffusion, Marangoni convectio
and dynamic adsorption. Comparison with experimental d
confirms that the model reflects well enough the main re
larities of the system behavior. The model is able to desc
repeated regular oscillations observed at large capillary
mersion depths as well as a single pulse observed at s
capillary immersion depths.

The time evolution of the system under consideration
characterized by interchange of slow~diffusion! and fast
~convective! stages that determine the oscillating depe
dency of surface tension vs time. During the induction p
riod, when the surface tension remains nearly constant
well as during the gradual increase of the surface tens
between pulses, convection is weak and diffusion is the m
-

im

s

ec
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mechanism of surfactant transfer. The sharp decrease o
surface tension corresponds to the onset of instability w
the concentration gradient near the surface in the vicinity
the capillary becomes large enough, and convective sur
tant transfer becomes predominant in the system. The as
metrical shape of the oscillation with a sharp decrease
gradual increase of the surface tension corresponds to
different durations of each stage. The fast stage lasts on
short time whereas the slow stage is very prolonged.

The system behavior during the induction period and
the beginning of the first oscillation is independent of t
vessel dimensions at any capillary immersion depth. It
close to that for an unbounded liquid layer. In the case
large immersion depth of the capillary, the presence o
boundary in the radial direction is a necessary precondi
for the appearance of second and subsequent oscilla
~pulses!. A reverse concentration gradient arises near the
eral wall due to the local surface contraction. It leads to
development of a reverse convective roll in this region. T
interaction of the two convective rolls rotating in oppos
directions results in a fast decrease of the velocity due
viscous dissipation, and the system returns to the slow s
when diffusion becomes dominating again. In contrast, if
immersion depth of the capillary is much smaller than t
distance to the wall, the influence of the wall is negligib
and the system behaves like an unbounded liquid layer
this case convection remains dominant all the time after
first oscillation, and subsequent oscillations are not possi
This qualitative difference explains the existence of the cr
cal immersion depth corresponding to the transition fro
single pulses to repeated oscillations@4#.
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