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Theoretical description of repeated surface-tension auto-oscillations
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A mathematical model is proposed to follow the behavior of a system where a droplet of a surfactant with
limited solubility on the tip of a capillary under the free liquid surface dissolves in a container with a unity
aspect ratio. Numerical simulations show that instability repeatedly arises and fades in the system, resulting in
auto-oscillations of the surface tension in agreement with the experimental data. The system evolution during
the oscillation is discussed in detail. It is established that the presence of a boundary in the radial direction is
a necessary precondition for the appearance of the second and following oscillations.
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INTRODUCTION The concentration gradient near the surface, and conse-
quently the Marangoni number, which is the criterion of sys-

Processes taking place in systems far from equilibriuntem stability, changes over time and depends on the radial
have been attractive for researchers for many decades. Whéfordinate. That is why it is impossible to explain the auto-
the system contains liquids with a free interface, hydrody-0scillation mechanism of the surface tension on the basis of
namic instabi“ty driven by the Marangoni effect can accom_known theories, and a SDECia| theoretical StUdy is necessary.
pany the processes of mass and energy trafisf8f Most of ~ In addition, the system geometry is vital for the appearance
the theoretical papers devoted to this pr0b|em deal with Conand characteristics of the auto-oscillations and should be
stant gradients of the temperature or concentration imposei@ken into consideration.
perpendicular to the interface or along it. At the same time in An understanding of the processes leading to the develop-
a great number of experimental investigations the gradientgent of auto-oscillations of the surface tension might be use-
change with time and are nonuniform in space. That is whyul for the investigation of processes in other systems that are
the available criteria are sometimes inadequate to predict th@r from equilibrium. In particular, a similar hydrodynamic
appearance and form of the instability. This is just the cas€Vvolution may be a component of the mechanism responsible
with the phenomenon of the auto-oscillation of surface tenfor the oscillations of the electrical potential across liquid
sion considered below. membranes investigated by Arei al. [5-7] and by Maeda

Auto-oscillations are observed on the free water surfac&t al.[8]. Normal and tangential concentration gradients of a
by the dissolution of a surfactant droplet situated at the tip ofurfactant appear at the water/oil interface by mass transfer
a capillary under the surfa¢8,4]. The water is poured into a through an oil membrane. Both gradients change over time
glass vessel with aspect ratithe ratio of the radius to the and along the interface according to the geometry of the
height of the order of unity. Diethyl phthalate, aliphatic al- measuring cell. Thus, from the hydrodynamic point of view a
cohols, or fatty acids have been used to form the dropletSystem with a liquid membrane is quite similar to those con-
Oscillations begin after a certain induction time during Sidered in this paper. The form of the oscillations is also very
which the surface tension remains constant. They have agimilar in both cases.
asymmetrical shape starting with an abrupt decrease of the The hydrodynamic approach developed here can probably
surface tension followed by a gradual increéBig. 1). The  be helpful also for a more thorough understanding of the
oscillation period depends on the surfactant properties. Ogscillations of the surface tension observed at the water-oil
cillations are absent when the immersion depth of the capilinterface by Dupeyrat and Nakacf®@] and studied recently
lary is smaller than a definite critical value depending on the
surfactant propertiegt].

Talcum powder placed on the surface displays a rapid 721
surface motion directed from the capillary to the vessel wall
simultaneously with the decrease of the surface tension. This
shows that the surface-tension auto-oscillations can be re-
lated to the development of a convective instability. Oscilla-
tions are revealed for surfactants having a density laidjer
ethyl phthalate and smaller(alcohols, fatty acids than
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water. Therefore, the Marangoni effect is responsible for this 69
Pohlznomenon and the buoyancy can play only a subsidiary : = p " = o

t (min)

FIG. 1. Auto-oscillations of the surface tension in the system
* Author to whom correspondence should be addressed. water—diethyl phthalatéexperimental resultg4]).
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by Magome and Yoshikavid0]. troducing the vorticity and the stream function according to
Numerical simulations of the dynamic behavior of sys-the equations

tems with temporally and spatially changing surface concen-

trations were performed by Jensen and Grotlpgid and by 1 o 1 av _duy du, 1

Matar and Troiarf12] for the spreading of an insoluble sur- R L e A A

factant over a thin liquid film and by Yeet al.[13] for film

drainage between two drops. Because of the system geortherer is the radial coordinate,is the normal to the surface

etry, they used the lubrication approximation where the inercoordinate downward directed with=0 at the surfacey,

tial terms in the Navier-Stokes equations are neglected. Ofndv are velocity components in directions radial and nor-

the other hand, these terms are significant for surface-tensigR@! to the surface, respectively, is the stream function, and

auto-oscillation, so in this case the full Navier-Stokes equa IS the vorticity. _ _ N
If time, length, concentration, stream function, vorticity,

tions should be solved. . :

Theoretical analysis of the mechanisms leading to the de"zlnd ;/elocny are scaled,_respectlvely, HWD’ H Co, HD,
velopment of auto-oscillations was started in Regf] and D./H ! andD/I_—| _(here,H Is the vessel he|ghD is the bulk
proceeded in Ref§14,15 where a mathematical model was dlffus!qn coefficient O.f the surfgctant, ap@ IS the surfactant
proposed for investigation of the conditions of the instabilitySOIUb'“ty) the governing equations in dimensionless form are
arising in a semi-infinite liquid layer with a surfactant droplet

. . . . Jd J J
under the free surface. A direct numerical simulation allowed Jo  dvro) (070)

us to follow the regularities of the model system evolution at ar 9z

during the induction period and at the first oscillation. The Po  Po 1do o

effect of the surfactant properties on the system behavior at — Prd(—2 +t =t —2) =0, 2
this time was studied as well. But it turned out to be impos- o 9z ror T

sible to obtain the second and following oscillations within 5 )

the limitations of this model. Thus an improved model was 7V 9 q’_ Eﬂ_ wr=0 @)

needed to clear up the nature of the surface-tension auto- o’ 9z2 r or
oscillations and the possibility of subsequent oscillations.

This paper is devoted to a description of such a model andto dc  d(v,c) d(v,c) v,c [d°c d°c 1dc
discussion of the results of the numerical simulation per- EJF ar + 9z T‘(WJFFJFFﬁ)
formed on its basis. (4)

where Pg=v/D is the diffusion Prandtl numbeiSchmidt
MATHEMATICAL FORMULATION numbey, v is the kinematic viscosity of the liquid, ardis

] o the surfactant concentration.
The model system considered represents a cylindrical ves- Initially, the liquid is assumed motionless, and the con-

sel filled with an incompressible viscous Newtonian liquid. centration of the surfactant is equal to its solubility on the
The upper free surface of the liquid is in contact with adroplet surfacdS) and zero elsewhere, i.e.,

passive gas. A cylindrical capillary is introduced into the

liquid. The capillary axis coincides with the vessel axis. A V=w=v,=v,=0,
droplet of a surface-active substance having a limited solu-
bility in the liquid is placed on the tip of the capillary. It is 1 if zreS

assumed that the density of the solution is independent of the
concentration and buoyancy can be neglected. The diffusion
coefficient of the solutén the bulk as well as at the surfgce
and the viscosity of the solution are assumed to be constarft. :
The viscosity of the gas, the intrinsic surface viscosity, th ottom of the ves_sel, fo_r the capillary and the't.jroplet sur-
decrease of the droplet volume due to dissolution, and th ce. Then, 'the dmgnsmnless bOU”dafY conditions for the
evaporation of the surfactant from the liquid/gas interface ar§t€am function, vorticity, and concentration are

neglected. The main difference of the model proposed here

®)

C:
0 elsewhere

t t=0. The no-slip condition is used for the wall and the

2

from that considered in Ref14] is the presence of the cap- V=0, o= i g, @:o atr=R, (6)
illary and the sidewall. The presence of the sidewall is a R or ar
necessary condition for the appearance of repeated oscilla-
tions, as shown below. 1%  dc

The equations governing the behavior of the system are V=0, o=v—7, —=0 atz=l, @
the Navier-Stokes, continuity, and convective diffusion equa-
tions. According to the system symmetry it is convenient to Jc
use cylindrical coordinates. Experiments with talcum powder V=0, w=0, o =0
show absence of motion in the azimuthal direction. There-
fore there is no dependence on the azimuthal coordinate.
This gives the possibility of eliminating the pressure by in- at r=0Uh+rq+\rg—reg<z<i, 8
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112V  &2¥ TABLE |. Calculated induction period depending on the grid
V=0, w=—=|—+—-=]|, ¢c=1 atr,zeS, (99 resolution.
r\Jar 0z
Induction period
1V  dc Grid resolution P
v=0, o= r_c a2 ar =0 (mesh point number min %
20x 20 13.1 455
at r=rgU0<z<h, (10 40% 40 226 787
80x 80 27.4 95.5
¥=0 atz=0, (1D 120% 120 28,7 100
M ! o tz=0 (12
w=Ma————=-— at z=0,
(1=Kcol') or diffusion term in Eq(4)]. The convective flux is proportional
to the velocity and it can be much larger than the diffusion
2
£+ d(T'vr) + er_ E(g 1£> flux at the largest values of the velocity. In this case the
at ar r Dl\are 1 or contribution of the artificial diffusion coefficient can also be
H e neglected because of the small contribution of the diffusion
- —=0 at z=0. (13)  fluxin comparison to the convective flux. The same reasons
K I'y 9z apply for the vortex transfer.

. S . . The proper grid resolution was implemented by compari-
HereR is the vessel radiug) is the immersion depth of the g4 of the results of the calculations f?)r different g)r/ﬂiliabk;3
capillary,ro is the droplet radius, is the capillary radiusl” ) | order to ensure the geometrical similarity of the system
is the Gibbs adsorptiofscaled bycoK I'y), K andl'y are  seq for all the grids considered, the surfactant droplet was
the parameters of the Langmuir isotherm, and Maygdeled as a cylinder of radiug=1mm and heighth,
=RTGK.I'nH/pvD is the Marangoni numbeR s the gas  —> mm.  The ~other geometrical parameters were
constantT is the temperaturey is the liquid density, an®s  -hosen as follows: capillary radius,=1 mm, capillary
is the surface diffusion coefficient. Equatit?) is obtained ;. mersion depthh=8 mm, vessel radiu®=20 mm, and

from the tangential stress balance on the free surface by Uggggg heightH=20 mm. The liquid used was water. The
ing the Szyszkowsky-Langmuir equation for the surface ten ) :

. ; ) properties of the surfactan(diffusion coefficientsD =D
sion. Equation(13) describes the mass balance on the freeP P A 3

; ' Lo =7.81xX10 ° cn?/s, solubility in water cg=5.8X10"°
surface with the assumption of diffusion controlled adsorp'mol/cn? parameters of the Langmuir isotherfy,=6.2
tion kinetics. It is also assumed that the relationship betweeq, ; 110 ’mollcmz K, =2.3x10° cni/mol) are close .to
the Gibbs adsorption and the adjacent bulk concentration iﬁmse fo ok

. S ; X : r hexanol and hexanoic acid.
given by the Langmuir isotherm written for dimensionless I

It is seen from Table | that there is a rather large differ-

variables: ence between the values of the induction period calculated
c on grids of 20 20, 40x 40, and 8% 80 mesh. At the same
r=|—— . (14)  time the results for the grids of 8080 and 126 120 mesh
1+KiCoC differ by less than 5%. Thus the 880 mesh provides suf-
ficient accuracy and can be used for the simulation.
NUMERICAL SCHEME

_ .A mgthematical simulation was perfprmed by using the RESULTS AND DISCUSSION

finite difference method on a regular grid. Equati@ was

solved by the Gauss-Seidel iterative method. For EZks. Numerical simulation allows us to get the concentration

and (4) the two-point forward difference approximation is and velocity distributions in the bulk and on the surface at
used for the time derivatives, the three-point centered differany time and to watch the time evolution of the system. The
ences are used for the diffusion terms, and the modified upsimulations show that the behavior of the system under con-
wind differences are used for the convective tefd®. The sideration depends on the surfactant properties and the sys-
use of upwind differences for the convective terms intro-tem geometry. Examples of the calculated dependencies of
duces an artificial diffusivity in the numerical scheme. Thisthe surface tension over time are presented in Figs.ghd
diffusivity is proportional to the velocity value in the corre- 3(a). The simulations were performed for the parameter val-
sponding direction. The analysis of the numerical dataies given in section “Numerical scheme” for a spherical
shows, however, that the contribution of the convective fluxsurfactant droplet of radiusy=1.5mm. The immersion

to the concentration change over time is of the same order afepth of the capillary is a geometrical parameter whose in-
magnitude as the contribution of the diffusion flux only whenfluence is particularly strong. Oscillations of the surface ten-
the dimensionless velocity is of the order of 1. The artificialsion are absent if the immersion depth is small enotkad.
diffusivity is less than 0.01 for this value of the velocignd  3). Only one oscillation appears at a certain increase in the
for the grid resolution chosen belgwit can evidently be immersion depth, and finally well shaped regular oscillations
neglected in comparison with [the coefficient before the are obtained by further increase of the defffig. 2). Thus,
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~FIG. 2. Results of numerical simulation for the capillary_ immer-  F1G, 3. Results of numerical simulation for the capillary immer-
sion depthh=8mm and the distance from the capillaty  sjon depth h=4 mm and the distance from the capillany
=10 mm: (a) surface tension vs timeb) surface velocity vs time.  — 10 mm: (a) surface tension vs timéb) surface velocity vs time.

the model system predicts the same regularities as observet the surface and in the bulk. At a certain moment the
in the experiment$4]. system becomes unstable. The rise of instability reveals itself
The calculations show the presence of repeated regulday a rapid increase of the velocity. The increase of the ve-
oscillation of the surface tensiofafter several transitional locity leads to a considerable acceleration of the mass trans-
oscillations for a capillary immersion depth=8 mm|[Fig.  fer and simultaneously to the spreading of the surfactant over
2(@)]. Thus, the phenomenon of spontaneous autothe interface. This corresponds to a sharp decrease of the
oscillations can be explained within the framework of asurface tensiofiFig. 2a)]. The fast stage continues only for
simple model, which takes into account only diffusion from a rather short time. Then the instability fades and the velocity
the droplet and convection due to the Marangoni effect todecreases by several orders of magnitude. The system returns
gether with nonuniform adsorption on the free surface. Thdo the slow stage. This stage corresponds to a slow increase
simulations display, first, that the transition from the slowof the surface tension due to the gradual desorption of the
diffusion regime to a regime with well developed convectionsurfactan{Fig. 2(a)]. The nonsymmetrical shape of the auto-
is very fast, which looks like an abrupt decrease of the suroscillation of the surface tension is determined by the differ-
face tension, and, second, that the transitions between thegsces of the two considered stages. The fast stage is short but
two regimes can repeat themselves periodically for a longs characterized by much more intensive mass transfer than
time, as in a real system. The shape of the calculated oscithe slow stage.
lations is very similar to the shape of the oscillations experi- The velocity change vs time for the capillary immersion
mentally observed. Consequently, the proposed model is adlepthh=4 mm and a distance of 10 mm from the capillary
equate in describing the mechanism of spontaneous autis presented in Fig.(®). It is seen that in this case instability
oscillations. Of course, buoyancy, evaporation of thealso arises. The maximum value of the surface velocity is
surfactant, mixednot pure diffusion adsorption kinetics, even larger than foh=8 mm [see Fig. 2v)]. The surface
surface deformation, and other factors should affect oscillatension sharply decreases after a time of about 6 min caused
tion characteristics such as induction time, period, and amby the increase of instabilityrig. 3@)]. However, the further
plitude. But the simulations performed demonstrate none o¥elocity alteration with time, when the instability fades, is
these factors plays a crucial role in the mechanism of autovery different. After a rather short time the velocity decrease
oscillations. becomes much slower fdr=4 mm. Later the velocity de-
The hydrodynamic behavior of the system under considereases gradually and remains positive and relatively large
eration resulting in auto-oscillations of the surface tension i©ver all time. The surface tension also decreases continu-
evident from the time dependence of the surface velocityusly without further oscillations. A completely different de-
presented in Fig.®). The system evolution is characterized pendency was obtained for=8 mm. Here, the velocity de-
by the interchange of two stages. The induction period andreases rapidly to zero and even becomes negative, i.e., the
the time between the pulses correspond to very slow motiosurface layer of liquid moves to the capillary. The negative
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values of the velocity are small and in the course of time the 121
velocity decreases almost to zero. The reverse movement of wl °
the liquid always accompanies the repeated oscillations of 5

the surface tensioFig. 2) and is not observed in the case of
a single pulsgFig. 3. Thus, it might be supposed that the
appearance of the liquid motion in the opposite direction is
an essential precondition for the repetition of the surface-
tension oscillations. We consider now the development of the
first oscillation and the conditions for the evolution of the
following oscillations in more detail.

The evolution of the system at the initial period, namely,
during the induction time and at the beginning of the first
oscillation, is not sensitive to the vessel dimensions. It is
quite similar to that for the unbounded liquid layer consid-
ered in Ref[14]. During the induction period the surfactant
is transferred mainly by means of diffusion. Diffusion forms
a spherically symmetrical concentration field in the bulk
phase around the droplet. This leads to an inhomogeneous
concentration distribution at the gas/liquid interface. The sur-
face concentration has a maximum near the capillary and
decreases very fast with increasing distance. For example, (b)
the concentration near the wall is 28 orders of magnitude less
than that in the vicinity of the capillary in the case presented
in Fig. 2 at timet=26 min, i.e., at the end of the induction 0.034
time. The radial distribution of the surface concentration dur-
ing the development of instability is presented in Figp)4lt
is seen that even at the moment of the beginning of instabil-
ity, the concentration near the wall is some orders of magni-
tude less than near the capillagurve 1. The normal con-

0.04 -

0.02 4

0.01

v (cmis)

0.00

centration gradient near the surface has the same dependency -0.01 8

on the radial coordinate. The concentration distribution in the o2 . ' .

bulk phase is given in Fig. 5. It is nearly spherical at the end 05 10 15 20
of the induction periodFig. 5a)]. © r(em)

The surface concentration gradient and the corresponding
g.radlent of the _surface_ ten.S|on Iead.to the a_ppearance Offgce velocity(b) and (c) for capillary immersion deptln=8 mm:
circular convective motion in the radial direction due to thecurve 1.t=26min 11 s, curve 2t=26min 12 s, curve 3
Marangoni effect. Initially, the center of the convective mo- _ 55 in 13 s, curve 4t= 26 min 14 s, curve 5t=26 min 20 s,
tion (the point where the stream function has a maximisn
in the vicinity of the capillary. With time the velocity in-
creases according to the increase of the surface concentration Convection spreads the solute over the surf&igs. 5b)
and the surface concentration gradient. The location of thend Hc)]. This leads to a sharp decrease of the surface ten-
stream function maximum moves slowly to the wall. Thesion over the whole surface. The normal concentration gra-
convective streamlines at the end of the induction period arelient has a maximum near the capillary and decreases very
presented in Fig.®). The velocity distribution near the cap- fast with increasing distana&igs. 7 and 8 The vicinity of
illary is also almost insensitive to the vessel dimensions bethe capillary is the region where the solute is supplied to the
fore the beginning of oscillations. surface. In the vicinity of the wall the normal concentration

According to the velocity and concentration distribution gradient near the surface is negative. The solute is supplied
the convective flux brings a more concentrated solution fromin this region due to surface convection. Here, it desorbs and
the droplet to the surface in the vicinity of the capillary. This the convective flux removes [iFigs. 5c) and Fd)].
leads to a more rapid increase of the normal concentration It is seen from the radial surface velocity distribution that
gradient(Fig. 7) and solute flux to the surface in this region. the velocity decreases sharply near the \\&ilfj. 4(b), curves
The surface concentration and the surface concentration gra-and 3. This leads to a local surface contraction here and
dient increase much faster when convection becomes appreierefore to an increase of the surface concentration near the
ciable. This results in an increase of the surface and bulkvall. A reverse surface concentration gradient appears in this
velocity which in turn results in a further increase of theregion[Fig. 4(a), curves 2—4 which suppresses the surface
normal concentration gradient. Thus, the convection acceleffow and causes a decrease of the surface velpEity 4(b),
ates itself, i.e., instability arises in the system. The developeurves 2—34
ment of instability is discussed more comprehensively in Because of the development of instability the maximum
Ref.[14]. of the stream function moves to the wall in the radial direc-

FIG. 4. Radial distribution of surface concentrati@h and sur-

curve 6,t=27 min, and curve 7t=39 min 30 s.
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FIG. 5. Concentration distribution in the bulk phase:(a) 26 min,(b) 26 min 10 s,(c) 26 min 20 s,(d) 26 min 34 s,(e) 27 min, and
(f) 39 min 30 s. The values of the dimensionless concentration are as followa)F¢e), curve 1,c=2x10"1, curve 2,c=10"2, curve 3,

c=2x10"%, curve 4,c=10"%, curve 5,c=10"°, and curve 6c=10 % For (f), curve 1,c=2x10"%, curve 2,c=5%x102, curve 3,
c=8X1073, curve 4,c=10"3, curve 5,c=10"%, and curve 6c=105.

tion and away from the surface in the vertical direcfifigs.  the surface concentration near the capillary because of the
6(b) and Gc)]. According to the new velocity distribution a decrease of surfactant supply and the local surface expansion
more dilute solution is involved in the motion and is suppliedhere[Fig. 4(a), curve §. The decrease of the surface concen-
to the surface from the bottoffrigs. 5c)—5(e)]. The normal tration and the surface concentration gradient also leads to
concentration gradient decread€gy. 7) and then decreases velocity damping caused by viscous dissipatiaiong with
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FIG. 6. Streamline distribution in the bulk phage:(a) 26 min @ ,,=27.9); (b) 26 min 14 s @ ,,=15904); (c) 26 min 20 s
(¥ max=4149); (d) 26 min 34 s 0= 731, WV 1in=—32.7); (&) 27 min (¥ ,2=10.7,V¥ in=—89.1); (f) 39 min 30 s ¥ 1,=3.75, ¥ 1in
=-0.78); here¥ ,and V¥ ., are the maximum and minimum of the dimensionless stream function, respectively.

the reverse surface concentration gradient near the.Walké  [Figs. 1b) and 4b), curve 6, and also the same curve 6 in
instability fades gradually. Fig. 4(c) at higher resolutioh The interaction of the initial

The reverse concentration gradient is the reason for thand reverse convective rolls causes faster damping of the
development of the reverse convective roll near the walconvective motion due to intensification of the dissipative
[Fig. 6(d)]. This roll expands toward the capillafffig. 6(e)].  processes. At this time the convective mass transfer de-
The velocity on a large part of the surface becomes negativereases and becomes less than the diffusion mass transfer.
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FIG. 7. Dimensionless normal concentration gradient near the F|G. 9. Radial distributions of the surface concentration for cap-
surface as a function of time for the distances from the capillary,"ary immersion deptth=4 mm: curve 1t=5 min 40 s, curve 2,
curve 1, r=15mm, curve 2,r=4mm, and curve 3,r t=5min 41 s, curve 3=5 min 42 s, curve 4=5 min 43 s, curve
=16.5mm. 5,t=5min 50 s, and curve 8=7 min.

This causes a further decrease of the solute delivery to thggn period. Although the numerical simulations provide
surface. The surface concentration becomes almost uniforfgwer induction period§Table ) and higher auto-oscillation
due to convective and diffusion redistribution of the SurfaC'periodS, the appearance or absence of the reverse ||qu|d mo-

tant[Fig. 4(a), curve €. _ o tion (from the wall to the capillaryis independent of the grid
During the slow stage the concentration distribution bevesolution.
comes different over the bulk regiofikig. 5(f)]. Near the The appearance of the reverse convective roll is the main

capillary the concentration distribution is nearly spherical Orgjstinction in the evolution of a system that displays repeated
stretched upward. The normal concentration gradient at thgscillations. It leads to a much faster decrease of convective
surface is downward directed. In more distant surface remass transfer after the oscillation than in the case of a single
gions the normal and tangential concentration gradients argy|se (oscillation). Development of instability takes place at
lower by some orders of magnitude. The normal concentraghe capillary immersion depth=4 mm too, resulting in a
of magnitude less than during the fast stgig. 4(c), curve  The reverse concentration gradient near the surface appears
7]. The reverse roll is reducddig. &f)]. The diffusion sur-  gis0 in this caseFig. 9, curves 3 and )4 However, this
factant transfer is directed to the surface in regions very closggncentration gradient is not sufficient to cause the develop-
to the capillary and from the surface into the bulk in all morement of the reverse convective roll. It only shifts the stream-
distant regions. The general tendency is a slow decrease @fies of the convective motion to the capillary. That is why
the surface concentration at this time. the velocity decreases much more slowly after the oscillation
When the convective mass transfer falls, diffusion fromgt h—4 mm than after that av=8 mm [cf. Figs. 2b) and
the drop leads to a renewed increase of the concentration ig|b)]. A small positive tangential concentration gradient ex-
the capillary region close to the surface. Thus the instabilityists in the vicinity of the capillary all the time. Surfactant is
develops again after a certain period of time in accordancgontinuously transferred from the capillary over the whole
v_vith the.mechanism discussed above, i.e., the next oscillas;face. The surface concentration incredfés 9, curves 5
tion begins. and 6 and the surface tension decreases gradually without
It should be noted that the maximum negative value of th%ubsequent oscillatior&ig. 3a)].
surface velocity increases with increase of the mesh point ag was mentioned above, the solubility and the param-
number, which leads to a decrease of the calculated oscillgsters of the Langmuir isotherm of the surfactant used in the
simulations are close to those for hexanol and hexanoic acid.
Let us compare the numerical results with the experimental
data given in Ref[17] for the system hexanoic acid—water.
51 This system is chosen because it is less affected by buoyancy
" than the system hexanol-water, and the presented numerical
model does not take buoyancy into account. The experiment
reveals an induction timé&he time before the first oscilla-
24 tion) of approximately 6 min and oscillation periods in the
range of 6—12 min for an immersion depth of the capillary of
approximately 9 mm. The calculated induction time is ap-
proximately 26 min, and the oscillation period approximately
7 min. The oscillation period increases slightly with time.
The calculated oscillation period agrees rather well with
FIG. 8. Radial distribution of the dimensionless normal concen-the experimental data. The difference in calculated and ex-
tration gradient near the surface at the titae26 min 14 s. perimentally observed induction times may be caused by the
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small influence of buoyancy as well as by the peculiarities oimechanism of surfactant transfer. The sharp decrease of the
the experimental procedure. As a matter of fact the formatiorsurface tension corresponds to the onset of instability when
of a droplet at the tip of a capillary takes about 2—3 min andthe concentration gradient near the surface in the vicinity of
is accompanied by motion of the liquid inside the capillarythe capillary becomes large enough, and convective surfac-
while the injected surfactant passes the capillary. The contant transfer becomes predominant in the system. The asym-
vective motion accelerates the mass transfer in the vicinity ometrical shape of the oscillation with a sharp decrease and
the surfactant/water interface and creates an initial surfactamradual increase of the surface tension corresponds to the
distribution near the droplet that causes a decrease of thdifferent durations of each stage. The fast stage lasts only a
induction time. This may also be the reason for the differenceshort time whereas the slow stage is very prolonged.

in the amplitudes of the first and following oscillatioffSg. The system behavior during the induction period and at
2(a)]. The other possible cause of the difference in paramthe beginning of the first oscillation is independent of the
eters of the first oscillation may be the neglect of surfactantessel dimensions at any capillary immersion depth. It is
evaporation in the mathematical model. The evaporation islose to that for an unbounded liquid layer. In the case of
most intense just during the initial period of time. It is evi- large immersion depth of the capillary, the presence of a
dent, however, that the influence of all the mentioned pheboundary in the radial direction is a necessary precondition

nomena requires further investigation. for the appearance of second and subsequent oscillations
(pulses. A reverse concentration gradient arises near the lat-
CONCLUSIONS eral wall due to the local surface contraction. It leads to the

_ ) ) ) development of a reverse convective roll in this region. The
Direct numerical simulation demonstrates that the autointeraction of the two convective rolls rotating in opposite
oscillations of the surface tension on a free liquid surfacegjrections results in a fast decrease of the velocity due to
caused by dissolution of a surfactant droplet in the bulkjiscous dissipation, and the system returns to the slow stage
phase, can be explained within the framework of a simpleynen diffusion becomes dominating again. In contrast, if the
model taking into account diffusion, Marangoni convection,immersion depth of the capillary is much smaller than the
and dynamic adsorption. Comparison with experimental datgjstance to the wall, the influence of the wall is negligible,
confirms that the model reflects well enough the main reguzng the system behaves like an unbounded liquid layer. In
larities of the system behavior. The model is able to describeyis case convection remains dominant all the time after the
repeated regular oscillations observed at large capillary imfyst oscillation, and subsequent oscillations are not possible.
mersion depths as well as a single pulse observed at smathjs qualitative difference explains the existence of the criti-

capillary immersion depths. _ ~_cal immersion depth corresponding to the transition from
The time evolution of the system under consideration issingle pulses to repeated oscillatidis.

characterized by interchange of sloidiffusion) and fast
(convective stages that determine the oscillating depen-
dency of surface tension vs time. During the induction pe-
riod, when the surface tension remains nearly constant, as
well as during the gradual increase of the surface tension N.M.K. gratefully acknowledges the Max Planck Institute
between pulses, convection is weak and diffusion is the mainf Colloids and Interfaces for financial support of this work.
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